PDE - constraint optimization

University of Southern California

Kanso's Bio-inspired Lab

Jingyi Liu

2024-06-24

Forward and Inverse Problem

Forward problem

 $\mathcal{F}(c;\alpha) = 0$

 $\mathcal{F}(c; \alpha)$ represents a PDE operator acting on c α is a coefficient

https://www.cs.cmu.edu/~ateh/presentations/slides-pde-constrained-optimization.html

Inverse problem

find α , min $f(c(\alpha))$ s.t. $\mathcal{F}(c; \alpha) = 0$

f: objective function (*ie*. $|c - c_o|^2$)

 α : design variable

c : state variable

https://kailaix.github.io/ADCME.jl/stable/tu_optimization/

Find adjoint variable

find α , $\min_{\alpha} f(c(\alpha))$ s.t. $\mathcal{F}(c; \alpha) = 0$

f: objective function, (*ie*. $|c - c_o|^2$)

- α : design variable
- c: state variable

we want to use gradeint based optimization, we need, $\partial_{\alpha} f(c(\alpha))$

$$\partial_{\alpha} f = \partial_{c} f \left| \partial_{\alpha} c \right|$$
 Obtain by using PDE

from
$$\mathscr{F}(c(\alpha); \alpha) = 0$$
,
we have $d_{\alpha}\mathscr{F} = \partial_{c}\mathscr{F} \ \partial_{\alpha}c + \partial_{\alpha}\mathscr{F} = 0$
 $\rightarrow \partial_{\alpha}c = -(\partial_{c}\mathscr{F})^{-1} \ \partial_{\alpha}\mathscr{F}$

 $\partial_{\alpha} f = \lambda^{\mathrm{T}} \partial_{c} f$, where $\lambda^{T} = -(\partial_{c} \mathscr{F})^{-1} \partial_{\alpha} \mathscr{F}$

Link to Lagrange function

find α , min $f(c(\alpha))$ s.t. $\mathcal{F}(c; \alpha) = 0$

f: objective function, (ie. $|c - c_o|^2$)

- α : design variable
- c : state variable

we want to use gradeint based optimization, we need, $\partial_{\alpha} f(c(\alpha))$

langrange function, $L(c, \alpha, \lambda) = f(c(\alpha)) + \lambda^T \mathcal{F}(c; \alpha)$

KKT conditions : (1) $\partial_{\lambda}L(c,\alpha,\lambda) = \mathscr{F}(c;\alpha) = 0$ (2) $\partial_c L(c, \alpha, \lambda) = \partial_c f(c) + \lambda^T \partial_c \mathcal{F}(c; \alpha) = 0$ (3) $\partial_{\alpha}L(c,\alpha,\lambda) = \partial_{\alpha}f(c) + \lambda^T \partial_{\alpha}\mathcal{F}(c;\alpha) = 0$

$$\partial_{\alpha} f = \partial_{c} f \left| \partial_{\alpha} c \right|$$
 Obtain by using PDE

from $\mathcal{F}(\mathbf{x}(\alpha); \alpha) = 0$, we have $d_{\alpha}\mathcal{F} = \partial_{c}\mathcal{F} \ \partial_{\alpha}c + \partial_{\alpha}\mathcal{F} = 0$ $\to \partial_{\alpha} c = - \left(\partial_{c} \mathcal{F}\right)^{-1} \partial_{\alpha} \mathcal{F}$

 $\partial_{\alpha} f = \lambda^{T} \partial_{c} f$, where $\lambda^{T} = -(\partial_{c} \mathcal{F})^{-1} \partial_{\alpha} \mathcal{F}$, is adjoint variable

for a given α , solve for c, λ , from(1), (2),

 $\rightarrow \partial_{\alpha} L(c, \alpha, \lambda) = \partial_{\alpha} f - \partial_{c} f(\partial_{c} \mathcal{F})^{-1} \partial_{\alpha} \mathcal{F}$

When alpha is optimal, this expression is equal to zero, i.e., all the KKT conditions are satisfied.

https://en.wikipedia.org/wiki/Karush-Kuhn-Tucker_conditions#:~:text=In

